On the Fourier-algebra of a locally compact amenable group
نویسندگان
چکیده
منابع مشابه
Fourier and Figà-Talamanca–Herz algebras on amenable, locally compact groups
For a locally compact group G, let A(G) denote its Fourier algebra and, for p ∈ (1,∞), let Ap(G) be the corresponding Figà-Talamanca–Herz algebra. For amenable G and p, p ∈ (1,∞) such that 1 p + 1 p , we show that Ap(G) ∩Ap′(G) = A(G).
متن کاملSPECTRUM OF THE FOURIER-STIELTJES ALGEBRA OF A SEMIGROUP
For a unital foundation topological *-semigroup S whose representations separate points of S, we show that the spectrum of the Fourier-Stieltjes algebra B(S) is a compact semitopological semigroup. We also calculate B(S) for several examples of S.
متن کاملAn Amenable Group with a Nonsymmetric Group Algebra
Let G be a discrete group, h(G) the group algebra of G. Symmetry of h(G) has been considered in [l], [3]. Groups containing a free subgroup on two or more generators are the only groups found to have nonsymmetric group algebras, and in each case the groups found to have symmetric algebras are in the family of amenable groups. In this note we present an example of an amenable group with a nonsym...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1971
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1971-0283138-3